This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

2-CYANOETHANETHIOAMIDE IN HETEROCYCLIC SYNTHESIS: NOVEL SYNTHESIS OF THIENO[2,3-B]PYRIDINE, PYRAZOLO[3,4-B]PYRIDINE AND PYRIDOPYRAZOLO-1,2,4-TRIAZINE DERIVATIVES

Mohamed A. A. Elneairyia; Azza M. Abdel-fattaha

^a Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

To cite this Article Elneairyi, Mohamed A. A. and Abdel-fattah, Azza M.(2001) '2-CYANOETHANETHIOAMIDE IN HETEROCYCLIC SYNTHESIS: NOVEL SYNTHESIS OF THIENO[2,3-B]PYRIDINE, PYRAZOLO[3,4-B]PYRIDINE AND PYRIDOPYRAZOLO- 1,2,4-TRIAZINE DERIVATIVES', Phosphorus, Sulfur, and Silicon and the Related Elements, 175: 1, 15-33

To link to this Article: DOI: 10.1080/10426500108040253 URL: http://dx.doi.org/10.1080/10426500108040253

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

2-CYANOETHANETHIOAMIDE IN HETEROCYCLIC SYNTHESIS: NOVEL SYNTHESIS OF THIENO[2,3-B]PYRIDINE, PYRAZOLO[3,4-B]PYRIDINE AND PYRIDOPYRAZOLO- 1,2,4-TRIAZINE DERIVATIVES

MOHAMED A.A. ELNEAIRY* and AZZA M. ABDEL-FATTAH

Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

(Received May 23, 2000; In final form July 13, 2000)

Several new synthesis of thieno[2,3-b]pyridine, pyrazolo[3,4-b]pyridine and pyridopyrazolo-1,2,4-triazine derivatives via the reactions of pyridinethiones with halogenated compounds, hydrazine hydrate and active methylene compounds.

Keywords: pyridinethione; thieno[2,3-b]pyridine; pyrazolo[3,4-b]pyridine; pyridopyrazolo-1,2,4-triazine

INTRODUCTION

In continuation of the work¹⁻¹⁰ in the chemistry of cyanothioacetamide (1), the present paper deals with the synthesis of several new heterocyclic compounds which exhibit biological activities as well as several chemical transformations. The reported biological activities of both pyridines as antimycotic¹¹, anti- depressant¹², fungicidal agents¹³ and pyrazoles as inhibitors and deactivators of liver alcohol dehydrogenase^{14,15} stimulated our interest in the synthesis of several new derivatives of these ring systems which are required for midicinal chemistry program.

^{*} To receive any correspondence, e-mail: elneairy@chem-sci.eun.eg

RESULTS AND DISCUSSION

It has been found that the arylidene derivatives of 3a reacted with ethyl acetoacetate (4) in ethanol and pyridine to afford a reaction product of molecular formula C₁₆H₁₃BrN₂O₂S which corresponded to equimolecular addition of 4 to 3a and loss of one molecule of water. The IR (cm⁻¹) spectrum of this reaction product showed the presence of NH (3193), CN (2218), CO-ester (1722), C=S (1525) and saturated CH₂, CH₃ (2985) groups. Moreover its ¹H-NMR (ppm) revealed among its signals those of NH of pyridine (s, br., 5.3). Based on the above data, the reaction product was formulated as 6-methyl-5-ethoxycarbonyl-4(4-bromophenyl)-3-cyanopyridine-2-thione 5a (cf. Chart 1 and table I and II). In the same manner compound 3b reacted with 4 in ethanol and pyridine to give the corresponding pyridinethione derivative 5b¹⁶. The reaction products 5a,b were taken as starting materials for the present work owing to contain more than one active site.

TABLE I Characterization data of the newly synthesized compounds

Comp.	M.P. (°C)	Yield	Molecular	%	Analy	sis Cal	cd./Fou	nd
(Colour)	(Solvent)	(%)	Formula	С	Н	N	S	Br
5a	228	80	C ₁₆ H ₁₃ BrN ₂ O ₂ S	50,93	3.45	7.43	8,48	21.22
(yellow)	(ethanol)			50.9	3.3	7.3	8.5	21.1
7a	194	65	C24H18BrCIN2O3S	54,39	3,40	5.29	6,04	15.11
(yellow)	(ethanol)			54.3	3.3	5.2	5.9	15.0
7ь	130	75	C25H21BrN2O3S	58.94	4.13	5,50	6.29	15.72
(yellow)	(ethanol)			58.7	4.0	5.5	6.2	15.5
7c	162	70	$C_{26}H_{24}CIN_3O_3S$	63.22	4.86	8.51	6,48	
(yellow)	(ethanol)			63.1	4.7	8.5	6,3	
7d	190	55	$C_{27}H_{27}N_3O_3S$	68,50	5.71	8.88	6,77	
(yellow)	(ethanol)			68.4	5.5	9,0	6.7	
9a	120	85	$C_{21}H_{19}BrN_2O_4S$	53.05	4.00	5.89	6.74	16.84
(white)	(ethanol)			52.8	3.8	5.7	6.8	16.9
9ь	170	80	$C_{23}H_{25}N_3O_4S$	62.87	5.69	9.57	7.29	
(white)	(ethanol)			62.6	5,8	9.5	7.1	
Ha	190-2	75	C ₁₉ H ₁₇ BrN ₂ O ₃ S	52,66	3,93	6.47	7.39	18,47
(yellow)	(ethanol)			52.5	3.8	6.5	7.3	18.3
116	150	64	$C_{21}H_{23}N_3O_3S$	63.48	5.79	10.5	8,06	
(yellow)	(ethanol)			63.5	5.5	10.4	8,0	

Comp.	M.P. (°C)	Yield	Molecular	%	Analy	sis Cald	d./Fou	nd
(Colour)	(Solvent)	(%)	Formula	\overline{c}	H	N	S	Br
14a	100	70	C ₁₇ H ₁₅ BrN ₂ O ₂ S	52.17	3.84	7.16	8.18	20.46
(yellow)	(ethanol)			52.5	3.7	7.2	8.0	20.2
14b	162	85	$C_{19}H_{21}N_3O_2S$	64.20	5.95	11.82	9.02	
(yellow)	(ethanol)			64.0	5.8	11.8	9.1	
15a	268	70	$C_{16}H_{15}BrN_4O_2$	51.23	4.03	14.93		21.29
(green)	(acetic acid)			51.1	4.2	14.8		21.1
15b	276	65	$C_{18}H_{21}N_5O_2$	63.70	6.24	20.64		
(green)	(acetic acid)			63.5	6.2	20.5		
16a	140	72	$C_{23}H_{20}BrN_5O_2S$	54.12	3.95	13.72	6.28	15.66
(yellow)	(ethanol)			54.2	3.8	13.8	6.2	15.5
16b	220	79	$C_{25}H_{26}N_6O_2S$	63.27	5.52	17.71	6.76	
(white)	(ethanol)			63.1	5.4	17.5	6.7	
17a	162 decomp.	64	C ₁₆ H ₁₃ ClBrN ₅ O ₂	45.47	3.10	16.57		18.93
(white)	(ethanol)			45.3	5.5	16.5		18.8
17Ь	140 decomp.	62	$C_{18}H_{19}CIN_6O_2$	55.89	4.95	21.73		
(white)	(ethanol)			55.8	4.9	21.6		
19a	126	81	$C_{21}H_{19}BrN_6O_4$	50.51	3.84	16.83		16.00
(red)	(ethanol)			50.5	3.7	16.7		15.8
19b	>300	67	$C_{25}H_{18}BrN_7O_2S$	53,58	3.24	17.49	5.72	14.26
(yellow)	(acetic acid)			53.4	3.3	17.4	5.8	14.3
19c	>300	56	$C_{19}H_{16}BrN_7O_2S$	46.92	3.32	20.16	6.59	16.43
(yellow)	(ethanol)			46.8	3.2	19.8	6.4	16.3
19d	274	85	$C_{23}H_{25}N_7O_4$	59.60	5.44	21.15		
(yellow)	(acetic acid)			59.5	5.3	21.2		
19e	>300	69	$C_{27}H_{24}N_8O_2S$	61.82	4.61	21.36	6.11	
(brown)	(acetic acid)			61.9	4.5	21.2	6.0	
19f	>300	73	$C_{21}H_{22}N_8O_2S$	55.98	4.92	24.87	7.11	
(brown)	(ethanol)			55.8	4.9	24.8	6.9	
20a	142	68	$C_{21}H_{19}BrN_6O_4$	50.51	3.84	16.83		16.00
(buff)	(ethanol)			50.5	3.9	16.8		15.9
20b	>300	65	$C_{25}H_{18}BrN_7O_2S$	53.58	3.24	17.49	5.72	14.26
(yellow)	(acetic acid)			53.4	3.2	17.4	5.6	14.1
20c	>300	80	$C_{19}H_{16}BrN_7O_2S$	46.92	3.32	20.16	6.59	16.43
(yellow)	(ethanol)			46.8	3.3	20.0	6.5	16.3
20d	296-8	64	$C_{23}H_{25}N_7O_4$	59.60	5.44	21.15		13,81
(yellow)	(ethanol)			59.5	5.3	21.2		13.7
20e	>300	72	$C_{27}H_{24}N_8O_2S$	61.82	4.61	21.36	6.11	
(yellow)	(acetic acid)			61.7	4.5	21.2	6.0	

Comp.	M.P. (°C)	Yield	Molecular	%	Analy	sis Calc	d/Fou	ınd
(Colour)	(Solvent)	(%)	Formula	\overline{c}	Н	N	S	Br
20f	>300	81	C ₂₁ H ₂₂ N ₈ O ₂ S	55.98	4.92	24.87	7.12	
(yellow)	(ethanol)			55,8	4.9	24.6	7.1	
20g	252	62	$C_{19}H_{14}BrN_7O_2$	50.46	3.12	21.68		17.67
(brown)	(ethanol)			50.4	3.1	21.7		17.6
20h	>300	56	$C_{21}H_{20}N_8O_2$	60,57	4,84	26,91		
(red)	(ethanol)			60.5	4.7	26,8		
22a	254	85	C21H18BrN5O3	53,85	3.87	14.95		17.06
(yellow)	(ethanol)			53.8	3.8	14.8		17.0
22b	170	62	$C_{22}H_{20}BrN_5O_4$	53.02	4.04	14.05		16.03
(yellow)	(ethanol)			52.9	4.0	13.9		16.1
22c	240	73	$C_{23}H_{24}N_6O_3$	63.87	5.59	19.43		
(red)	(ethanol)			63.7	5.5	19.3		
22d	>300	68	$C_{24}H_{26}N_6O_4$	62,33	5,66	18.17		
(yellow)	(ethanol)			62.2	5.6	18.1		
24a	180	65	C ₂₇ H ₂₄ BrN ₅ O ₅	56.07	4.18	12.11		13 82
(yellow)	(ethanol)			56.1	4.1	12.0		13.7
24b	190	80	$C_{29}H_{30}N_6O_5$	64.19	5.57	15.49		
(yellow)	(ethanol)			64.1	5.4	15.4		
25a	258	64	$C_{27}H_{22}BrN_5O_4$	57.87	3.96	12.49		14.26
(green)	(ethanol)			57.8	4.0	12.4		14.3
25b	>300	72	$C_{29}H_{28}N_6O_4$	66.39	5.38	16.02		
(yellow)	(ethanol)			66,3	5.2	16,0		
28a	220	81	$C_{25}H_{19}BrN_6O_3S$	53.29	3,39	14.91	5.69	14.18
(white)	(ethanol)			53.3	3.4	15.1	5.5	14.1
28b	210	62	$C_{27}H_{25}N_6O_3S$	61.46	4.77	18.58	6.08	
(yellow)	(ethanol)			61.3	4.7	18.4	5.9	
29a	240	70	$C_{29}H_{23}N_6O_5S$	53.79	3.58	12.97	4.95	12.34
(white)	(acetic acid)			53.6	3.6	12.8	4.8	12.2
29Ь	256	85	$C_{31}H_{29}N_7O_5S$	60.87	4.78	16.03	5.24	
(yellow)	(acetic acid)			60.7	4.7	16.1	5.2	
30a	>300	62	C ₂₅ H ₁₈ BrN ₅ O ₄ S	53.20	3.22	12.41	5.68	14.16
(yellow)	(ethanol)			53.1	3.2	12.2	5.6	14.2
30b	280	75	$C_{27}H_{24}N_6O_4S$	61.35	4.58	15.89	6.07	
(brown)	(ethanol)			61.2	4.5	15.7	5.9	

Compounds 7a, 7c, 17a and 17b, the % of chlorine calcd./found: 6,70/ 6.5; 7,19/ 7.0; 8,40/8.3; 9,17/9.0 respectively.

a. Ar=C_sH₄Br-p b. Ar=C_sH₄NMe₂-p

CHART I

Downloaded At: 12:17 28 January 2011

TABLE II IR and 1H NMR data

Comp.	IR [KBr, cm ⁻¹]	¹ H NMR 8 ppm
Sa	3193 (NH); 3057 (CH aromatic); 2985 (CH sat.); 2218 (CN); 1722 (CO-ester); 1608 (C=C) and 1525 (C=S).	0.9 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 1H, NH) ² and 7.3–7.8(m, 4H, ArH's).
7a	34k0, 3318 (NH ₂); 3tkS (CH aromatic); 29k0 (CH sat.); 172k (CO- exter); and 1605 (C=C).	1.0 (t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 3.9 (q, 2H, CH ₂ CH ₃); 5.2 (s, br., 2H, NH ₂) ² and 7.3–7.8 (m, 8H, ArH's).
٤	34M). 3328 (NH ₂); 30M) (CH aromatic); 29M) (CH sat.); 1725 (CO-exter) and 1605 (C=C).	1.0 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 1.6 (s, 3H, CH ₃ at Ar') 3.7 (q, 2H, CH ₂ CH ₃); 5.2 (s, br., 2H, NH ₂) ² and 7.3–7.8 (m, 8H, ArH's).
7c	3483, 3317 (NH ₂); 30k0 (CH aromatic); 29k0 (CH sat.); 1724 (CO-exter); and 16t05 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.4 (s, 3H, CH ₃); 3.1 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); 5.2 (s, br., 2H, NH ₂) ³ and 7.3–7.8 (m, 8H, ArH's).
P	3190, 3336 (NH ₂); 3085 (CH aromatic); 2981 (CH sat.); 1732 (CO-exter); and 1606 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃ at pyridine); 1.6 (s, 3H, CH ₃ at Ar'); 3.1 (s, 6H, N(CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); 5.2 (s, br., 2H, NH ₂) ³ and 7.3-7.8 (m, 8H, ArH's).
8	3050 (CH aromatic); 2987 (CH sat.); 2223 (CN); 1732 (CO-exter); and 1600 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 2.4 (s, 6H, SCH (COCH ₃) ₂); 3.2 (s, 1H, SCH(COCH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); and 7.3–7.8 (m, 4H, ArH's).
8	3058 (CH aromatic); 2981 (CH sat.); 2220 (CN); 1732 (CO-exter); and 1600 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 2.4 (s, 6H, CH (COCH ₃) ₂); 2.9 (s, 6H, N(CH ₃) ₂); 3.2 (s, 1H, SCH(COCH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); and 7.3-7.8 (m, 4H, ArH's).
=======================================	349), 3336 (NH ₂); 3050 (CH aromatic); 2985 (CH sat.); 1732 (CO-exter); and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 1.5 (s, 3H, - COCH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.2 (s, b., 2H, NH ₂) ² and 7.3–7.8 (m, 4H, ArH's).
=	3485, 3335 (NH ₂); 3054 (CH aromatic); 2983 (CH sat.); 1730 (CO-ester); and 1608 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 1.7 (s, 3H, COCH ₃); 3.2 (s, 6H, N (CH ₃)) 2); 3.7 (q, 2H, CH ₂ CH ₃); 5.2 (s, br., 2H, NH ₂) ² and 7.3–7.8(m, 4H, ArH's).
<u>4</u>	30Ki) (CH aromatic); 29K5 (CH sat.); 2218 (CN); 1729 (CO-ester); and 16t5 (C=C).	0.9 (r, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 1.8 (s, 3H, SCH ₃); 3.7 (q, 2H, CHH ₃) and 7.4–7.7 (m, 4H, ArH's).

Comp.	IR [KBr, cm ⁻¹]	H NMR (8 ppm)
₹	3070 (CH aromatic); 2987 (CH sat.); 2222 (CN); 1730 (CO-ester); and 1600 (C=C).	0.9(t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 1.9 (s, 3H, SCH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); and 7.2–7.7 (m, 4H, ArH's).
15a	3450, 3303, 3200 (NH and NH ₂); 3060 (CH aromatic); 2985 (CH sat.); 1710 (CO-ester); 1630 (C=N) and 1605 (C=C).	0.9 (t. 3H. CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 3.8 (q, 2H, CH ₂ -CH ₃); 5.4 (s, br., 2H, NH ₂)* 5.9 (s, 1H, NH) ² and 7.3–7.8 (m, 4H, ArH's).
15b	34(X), 329X, 3193 (NH and NH ₂); 3(M) (CH aromatic); 2985 (CH sat.); 1716 (CO-ester); 1629 (C=N) and 1598 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ -CH ₃); 5.4 (s, br., 2H, NH ₂) ^a ; 5.9(s, 1H, NH) ^a and 7.3–7.8 (m, 4H, ArH's).
16a	3392, 3200 (three NH); 3070 (CH aromatic); 2980 (CH sat.); 1725 (CO-ester); 1550 (C=S) and 1608 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 6.0-6.5 (s, br., 3H, three NH) ^a and 7.3-7.8 (m, 9H, ArH's).
2	3394, 3200, (three NH); 3060 (CH aromatic); 2987 (CH sut.); 1728 (CO-exter); 1535 (C=S) and 1608 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 6.2-6.5(s, br., 3H, three NH) ³ and 7.3-7.8 (m, 9H, ArI ³ s).
17a	3185(NH); 3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-ester); 1620 (C=N) and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.9 (s, 1H, NH) ^a and 7.4–7.7 (m, 4H, ArH's).
17b	3180 (NH); 3070 (CH aromatic); 2987 (CH sat.); 1730 (CO-ester); 1620 (C=N) and 1610 (C=C).	0.9(t, 3H, CH ₂ CH ₃); 1.2 (s, 3H, CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); 5.8 (s, 1H, NH) ³ and 7.0–7.7 (m, 4H, ArH's).
19a	3301, 3198 (two NH); 3095 (CH aromatic); 2987 (CH sat.); 2219 (CN); 1720, 1697 (two CO-ester) and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1 (s, 3H, CH ₃); 1.6 (t, 3H, CH ₂ CH ₃ at pyrazole); 3.7 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0(q, 2H, CH ₂ CH ₃ at pyrazole); 5.3 (s, br., 2H, two NH) ^a and 7.3-7.8 (m, 4H, ArH's).
19b	3328, 3190 (two NH); 3050 (CH aromatic); 2985 (CH sat.); 2220 (CN); 1725 (CO-ester); and 1608 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 52 (s, br., 2H, two NH) ^a and 7.3–7.8 (m, 8H, ArH's).
36	3328, 3320, 3290, 3285 (two NH and NH ₂); 3050 (CH aromatic); 2985(CH sat.); 2217(CN); 1731 (CO-ester); 1608 (C=C) and 1535(C=S).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 4H, two NH and NH ₂) ^a and 7.3–7.8(m, 4H, ArH's).

Comp.	IR KBr, cm ⁻¹	'H NMR 18 ppm !
8	3343, 3298 (two NH); 3/95 (CH aromatic); 2987 (CH sat.); 2219 (CN); 1725, 1697 (two CO-ester); and 16/15 (C=C).	0.9 (t, 3H, CH, CH ₃ at pyridine); 1.1(s, 3H, CH ₃); 1.6 (t, 3H, CH ₂ CH ₃ at pyrazole); 3.2 (s, 6H, N(CH ₃) ₂); 3.7(q, 2H, CH ₂ CH ₃ at pyridine); 4.0(q, 2H, CH ₂ CH ₃ at pyriazole); 5.3 (s, br., 2H, two NH) ² and 7.3–7.8(m, 4H, ArH's).
<u>\$</u>	3328, 3290 (two NH); 3050 (CH aromatic); 2985 (CH sat.); 2220 (CN); 1725 (CO-ester); and 1608 (C=C).	3328, 3290 (two NH); 3050 (CH aromatic); 2985 (CH sat.); 0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.9 (q, 2H, 2220 (CN); 1725 (CO-ester); and 16tk (C=C). CH ₂ CH ₃); 5.3 (s, br., 2H, two NH) ² and 7.3–7.8 (m, 8H, ArH's).
19	3328, 3320, 3290, 3285 (two NH and NH ₂); 3050 (CH aromatic); 2985 (CH sat.); 2217 (CN); 1725 (CO-ester); 1608 (C=C) and 1535 (C=S).	332k, 3320, 329f), 3285 (two NH and NH ₂); 3050 (CH aro- 0.8(t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.2 (s, 6H, N(CH ₃) ₂); 3.7 (q, 2H, matic); 2985 (CH sat.); 2217 (CN); 1725 (CO-ester); 16fM
8	3343, 3298 (NH ₂); 3095 (CH aromatic); 2987 (CH sat.); 1725 (CO- ester); 1697 (CO ester with H- bonding); and 1605 (C=C).	0.9 (t, 3H, CH,CH, at pyridine); 1.1 (s, 3H, CH ₂); 1.6 (t, 3H, CH ₂ CH ₃ at triazine); 3.7 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0(q, 2H, CH ₂ CH ₃ at triazine); 5.3 (s, br., 2H, NH ₂) ^a and 7.3-7.8 (m, 4H, ArH's).
30 5	3328, 3290 (NH ₂); 3050 (CH aromatic); 2985(CH sat.); 1731 (CO-exter); and 1608 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 2H, NH ₂) ² and 7.3-7.8 (m, 8H, ArH's).
30c	3328, 3320, 3290, 3285 (two NH ₂); 3050 (CH aromatic); 2985 (CH sat.); 1725 (CO-ester); 1608 (C=C) and 1535 (C=S).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 4H, two NH ₂) ² and 7.3–7.8(m, 4H, ArH's)
P07	3343, 3298 (NH ₂); 3095 (CH aromatic); 2987 (CH sat.); 1725 (CO- ester); 1697 (CO ester with H- bonding); and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1 (s, 3H, CH ₃); 1.6 (t, 3H, CH ₂ CH ₃ at triazine); 3.2 (s, 6H, N(CH ₃) ₂); 3.7(q, 2H, CH ₂ CH ₃ at pyridine); 4.0 (q, 2H, CH ₂ CH ₃ at triazine); 5.2-5.3 (s, br., 2H, NH ₂) ^a and 7.3-7.8 (m, 4H, ArH's).
20e	3343, 329x (NH ₂); 3/95 (CH aromatic); 29x7 (CH sat.); 1728 (CO-ester); and 16t5 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); 5.2–5.3 (s, br., 2H, NH ₂) ² and 7.3–7.8 (m, 8H, ArH's).
707	3328, 3390, 3290, 3285 (two NH ₂); 3050 (CH aromatic); 2985(CH sat.); 1725 (CO-exter); 16f/8 (C=C) and 1535 (C=S).	0.9 (t, 3H, CH ₂ CH ₃); 1.1(s, 3H, CH ₃); 3.2 (s, 6H, N (CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); 5.2–5.3 (s, br., 4H, two NH ₂) ² and 7.3–7.8 (m, 4H, ArH's)

Comp.	IR KBr, cm ⁻¹	I H NMR 18 ppm1
20g	3339, 3284 (NH ₂); 3060 (CH aromatic); 2985 (CH sat.); 2218 (CN); 1729 (CO-ester); and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.3 (s, 3H, CH ₃); 3.8 (q, 2H, CH ₂ CH ₃); 5.2–5.3 (s, br. 2H, NH ₂) ² and 7.4–7.7 (m, 4H, ArH's).
70h	3339, 3284 (NH ₂); 3060 (CH aromatic); 2985 (CH sat.); 2218 (CN); 1729 (CO-ester); and 1605 (C=C).	0.9 (t. 3H, CH ₂ CH ₃); 1.3 (s. 3H, CH ₃); 3.1 (s. 6H, N(CH ₃) ₂); 3.8 (q. 2H, CH ₂ CH ₃); 5.2–5.3 (s. br., 2H, NH ₂) ³ and 7.4–7.7 (m, 4H, ArH's).
22a	3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-ester); 1689 (CO-acetyl); and 1605 (C=C).	0.8 (t. 3H, CH ₂ CH ₃); 1.1 (s. 3H, CH ₃ at pyridine); 1.3 (s. 3H, CH ₃ at triazine); 1.8 (s. 3H, COCH ₃); 3.7 (q. 2H, CH ₂ CH ₃); and 7.4-7.7 (m, 4H, ArH's).
22b	3060 (CH aromatic); 2985 (CH sat); 1729 (two CO-ester); and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1(s, 3H, CH ₃ at pyridine); 1.3 (s, 3H, CH ₃ at triazine); 1.6 (t, 3H, CH ₂ CH ₃ at triazine); 3.4 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0 (q, 2H, CH ₂ CH ₃ at triazine); and 7.4–7.7 (m, 4H, ArH's).
226	3060 (CH uromatic); 2985 (CH sat.); 1697 (CO-acetyl); 1729 (CO-exter); and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃ at pyridine); 1.3 (s, 3H, CH ₃ at triazine); 1.8 (s, 3H, COCH ₃); 3.2 (s, 6H, N(CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃); and 7.4–7.7 (m, 4H, ArH's).
22d	3060 (CH aromatic); 2985 (CH sat.); 1700 (CO-exter at triazine); 1729 (CO-exter at pyridine); and 1605 (C=C).	0.8 (t. 3H, CH ₂ CH ₃ at pyridine): 1.1 (s, 3H, CH ₃ at pyridine); 1.3 (s, 3H, CH ₃ at triazine); 1.8 (t, 3H, CH ₂ CH ₃ at triazine); 3.2 (s, 6H, N(CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃ at triazine); and 7.4–7.7 (m, 4H, ArH's).
24a	3350, 3298 (two NH); 3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-exter); 1699 (CO-benzoyl) and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1 (s, 3H, CH ₃); 1.8 (t, 3H, CH ₂ CH ₃ at pyrazole); 3.7 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0 (q, 2H, CH ₂ CH ₃ at pyrazole); 5.3 (s, br., 2H, NH) ^a and 7.4–7.7 (m, 9H, ArH's).
24b	3125 (two NH); 3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-ester); 1684 (CO-benzoyl) and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1 (s, 3H, CH ₃); 1.8 (t, 3H, CH ₂ CH ₃ at pyrazole); 3.2 (s, 6H, N(CH ₃) ₂); 3.7 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0 (q, 2H, CH ₂ CH ₃ at pyridine); 4.0 (q, 2H, CH ₂ CH ₃ at pyriazole); 5.3 (s, br, 2H, NH) ³ and 7.4–7.7 (m, 9H, ArIf's).
25a	3060 (CH aromatic); 29X5(CH sat.); 1720 (two CO-exter); and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃ at pyridine); 1.1 (s, 3H, CH ₃); 1.8 (t, 3H, CH ₂ CH ₃ at pyrazole); 3.7 (q, 2H, CH ₂ CH ₃ at pyridine); 4.1 (q, 2H, CH ₂ CH ₃ at pyrazole); and 7.4–7.7 (m, 9H, ArH's).

Сотр.	IR [KBr. cm ⁻¹]	'H NMR 15 ppm!
25b	3060 (CH aromatic); 2985 (CH sat.); 1720 (two CO-exter); and 1605 (C=C).	3060 (CH aromatic); 2985 (CH sat.); 1720 (two CO-ester); 0.8 (t. 3H, CH ₂ CH ₃ at pyridine); 1.1 (s. 3H, CH ₃ C); 1.6 (t. 3H, CH ₂ CH ₃ at pyridine); 4.1 (q. 2H, CH ₂ C); at pyridine); 4.1 (q. 2H, CH ₂ C); C=C). CH ₂ CH ₃ at pyrazole); and 7.4–7.7 (m. 9H, ArH's).
8	3332, 3290 (two NH); 3060 (CH aromatic); 2986 (CH sat.); 1729 (CO-ester); 1680 (CO-benzoyl); and 1605 (C=C). 3342, 3290 (two NH); 3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-ester); 1649 (CO-benzoyl) and 1605 (C=C).	0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 2H, NH) ² and 7.4–7.7 (m, 9H, ArH's), 0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.2 (s, 6H, N(CH ₃) ₂); 3.8 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 2H, NH) ² and 7.4–7.7 (m, 9H, ArH's).
桑	3332, 3290 (two NH); 3060 (CH aromatic); 2986 (CH sat.); 1729 (CO-ester); 1680 (CO-benzoyl); and 1605 (C=C). 3342, 3290 (two NH); 3060 (CH aromatic); 2985 (CH sat.); 1729 (CO-ester); 1649 (CO-benzoyl) and 1605 (C=C).	0.9 (t. 3H, CH ₂ CH ₃): 1.1 (s. 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s. br., 2H, NH) ² and 7.4–7.7 (m, 9H, ArH's), 0.9 (t, 3H, CH ₂ CH ₃); 1.1 (s., 3H, CH ₃); 3.2 (s. 6H, N(CH ₃) ₂); 3.8 (q, 2H, CH ₂ CH ₃); 5.3 (s. br., 2H, NH) ² and 7.4–7.7 (m, 9H, ArH's).
29.	3060 (CH aromatic); 2985 (CH sat.); 1699 (CO-benzoyl and acetyl); 1729 (CO-ester) and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.4 (s, 3H, COCH ₃ at pyrazole); 3.6 (s, 3H, COCH ₃ at thia-diazole); 3.9 (q, 2H, CH ₂ CH ₃); and 7.4–7.7 (m, 9H, ArH's).
236	3(60) (CH aromatic); 29X5(CH sat.); 1699 (CO-benzoyl and acetyl); 1729 (CO-exter) and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.1 (s, 6H, N(CH ₃) ₂) 3.4(s, 3H, COCH ₃ at pyrazole); 3.6 (s, 3H, COCH ₃ at thiadiazole); 3.9 (q, 2H, CH ₂ CH ₃); and 7.4–7.7 (m, 9H, ArH's).
30a	3342 (NH); 3060 (CH aromatic); 2985 (CH sat.); 1705 (thiadiazinone and benzoyl CO); 1729 (CO-exter) and 1605 (C=C).	0.8 (t, 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.7 (q, 2H, CH ₂ CH ₃); 5.3 (s, br., 1H, NH) ² and 7.4–7.7 (m, 9H, ArH's).
e e	3342 (NH); 3/kl) (CH aromatic); 29/k5 (CH sat.); 1699 (thiadiazinone and benzoyl CO); 1729 (CO-exter) and 1605 (C=C).	3342 (NH); 3160 (CH aromatic); 2945 (CH sat.); 1699 (thi- 0.8 (t. 3H, CH ₂ CH ₃); 1.1 (s, 3H, CH ₃); 3.9 (q, 2H, CH ₂ CH ₃); 3.2 (s, 6H, adiazinone and benzoyl CO); 1729 (CO-exter) and 1605 N(CH ₃) ₂ ; 5.3 (s, br., 1H, NH) ^a and 7.4–7.7 (m, 9H, ArH's). (C=C).

a. Lost after D₂O exchange

Compounds 5a,b were reacted with several halogenated ketones such as ω-bromo-4-chloroacetophenone, ω-bromo-4-methylacetophenone. α-chloroacetyl acetone and chloroacetone. It has been found that, compound 5a reacted with ω-bromo-4-chloroacetophenone (6a) to give the reaction product 7a. The IR (cm⁻¹) spectrum of 7a was free from the nitrile function and newly born of NH2 absorption band. Moreover, its H-NMR (ppm) revealed among its signals those of NH₂group. Based on elemental analysis and spectral data, compound 7a was assigned as thienopyridine derivative 7a. Moreover the mass spectrum of compound 7a $m/e = M^{+}=$ 529(50.2%), m/e=M+1=530(100%)m/e=M+2=531(66.1%) which is the same molecular weight required for a compound with molecular formula C₂₄H₁₈N₂O₃SBrCl (cf. Chart 1). Analogously compound 5a reacted with ω-bromo-4-methylacetophenone (6b) to afford 7b corresponding to thienopyridine derivative. In the same manner 5b reacted with 6a,b to yield the corresponding pyridinethione derivatives 7c,d. The structure of 7c,d were assigned based on the correct elemental analysis and spectral data as 7a,b described before. Moreover the mass spectrum of compound 7d gave $m/e=M^+=473(99.7\%)$ and m/e=M+1=474(100%)which is the same molecular weight required for a compound with molecular formula C₂₇H₂₇N₃O₃S (cf. Chart 1 and table I and II)

Compound 5a reacted also with α -chloroacetylacetone (8) in methanolic sodium methoxide followed by loss of hydrogen chloride to afford 2-S-diacetylmethylpyridine derivative 9a. The IR (cm⁻¹) spectrum of this reaction product showed the absorption bands of CN (2223), CO-ester (1732), and saturated CH₂, CH₃ (2987) groups. Its ¹H.NMR revealed the signals assigned with the structure (cf. Chart I and Experimental Part). Further elucidation of 9a was confirmed via its cyclization in sodium methoxide solution on hot to afford the cyclized product 11a. The IR (cm⁻¹) spectrum of this reaction product was free from the absorption band of nitrile function and newly born of NH₂ group. Moreover its ¹H-NMR revealed among its signals the signal of newly NH₂ group. Based on elemental analysis and spectral data compound 11a was assigned as thienopyridine derivative. The formation of 11a through this cyclization reaction is assumed to proceed via initial addition of methine group of 9a to the nitrile function to give the corresponding non-isolable 2,2-diacetyl-3-iminothieno[2,3-b]pyridine derivative 10a which then underwent acetic acid cleavage and this followed by intramolecular attack of the intermediate carbanion on the imine to afford 11a. The structure of 11a was further confirmed via alternative synthesis,

thus compound **5a** reacted with chloroacetone (**12**) to give directly the final isolable product **11a**. Compound **11a** which prepared via this route was found to be identical in all aspects with that **11a** prepared as described before (cf. Chart 1 and Experimental Part). In the same manner compound **5b** reacted with **8** and **12** to give the reaction products **9b** and **11b**. Moreover, the structures of **9b** and **11b** were established on the basis of elemental analysis and spectral data as **9a** and **11a** described before. Moreover the mass spectrum of compound **11b** gave $m/e = M^+ = 397(91.9\%)$ which is the same molecular weight required for a compound with molecular formula $C_{21}H_{23}N_3O_3S$ (cf. Chart 1)

The work was extended by the reaction of 5a,b with methyl iodide to afford the corresponding 2-S-methylpyridine derivatives 14a,b. Compounds 14a,b were reacted with hydrazine hydrate to give a sulfur free reaction products 15a,b. The IR (cm⁻¹) spectra of these reaction products showed the newly born absorption bands of NH₂ and absence of nitrile absorption bands. Their ¹H-NMR (ppm) spectra revealed the signals of NH and NH₂ at (s, br., 5.4). On shaking compounds 15a and 15b with deuterium oxide (D₂O) the singlet broad signal at 5.4 ppm which corresponding to NH₂ and NH groups disappeared and two new signals appeared. The first is the singlet at 4.6 ppm for 1H of DOH due to the exchanging proton at NH with D₂O and the second is the singlet signal at 4.9 ppm for 2H of H₂O due to the exchanging proton at NH₂ with D₂O. The mass spectrum of compound 15b gave m/e = M⁺= 339(100%) which is the same molecular weight required for a compound with molecular formula $C_{18}H_{21}$ N₅O₂ (cf. Chart 2 and Experimental part).

Compounds **15a,b** were taking as starting materials for synthesis of a new series of heterocyclic compounds. Compound **15a** reacted with phenyl isothiocyanate to afford pyrazolo[3,4-b]pyridine-3-yl phenylthiourea derivative **16a**. The IR (cm⁻¹) spectrum of **16a** showed the absorption bands of three NH, CO-ester and C=S groups. Moreover its ¹H-NMR (ppm) spectrum revealed the signals of three NH, CH₂CH₃, CH₃ in addition to the aromatic protons. Based on the above data compound **16a** was formulated as thiourea derivative. In the same manner **5b** reacted with phenyl isothiocyanate to yield **16b**. The mass spectrum of **16b** gave m/e=476 (1.5%) and a base peak at m/e=384 (100%) via loss of the moiety phNH (cf. Chart 2 and Experimental part).

The synthetic potential of **15a,b** was investigated via their reaction with nitrous acid to afford the isolable diazonium salts **17a,b**. The IR (cm⁻¹)

spectra of these reaction products have no any absorption bands corresponding to the NH₂ groups. Their ¹H-NMR (ppm) spectra do not revealed any signals corresponding to NH₂ group. Based on the above data compounds 17a,b were formulated as pyrazolo-pyridinediazonium chloride derivatives. Compounds 17a,b were reacted with some active methylene compounds.

CHART 2

Thus, it has been found that 17a reacted with ethylcyanoacetate (18a) to vield a reaction product 19a. The IR (cm⁻¹) spectrum of this reaction product showed the absorption bands of two NH (3301, 3198), two CO-ester (1720, 1697), CN (2219) and saturated CH₂ and CH₃ (2987) groups. The ¹H-NMR (ppm) spectrum of **19a** revealed the absorption bands of two NH (s, br., 5.3), CH₂CH₃ at pyridine (t, 0.9; q, 3.7), CH₂CH₃at pyrazole (t, 1.6; q, 4.0), CH₃ (s, 1.1) in addition to the aromatic protons (m, 7.3-7.8). Based on the above data compound 19a was formulated as pyrazolopyridine derivative (cf. Chart 2 and Experimental Part). Further elucidation of structure of 19a via its cyclization in boiling ethanol in the presence of triethyl amine to yield the cyclized product corresponding to pyrido[2',3':3,4]pyrazolo[5,1-c]-1,2,4-triazine derivative 20a. The IR (cm⁻¹) spectrum of **20a** showed the absence of nitrile absorption band, and newly born NH₂ absorption band at (3343, 3298). It's ¹H-NMR (ppm) spectrum revealed among its signals those of NH₂ (s, br., 5.3)., compound 20a was prepared via another route by the reaction of 18a with 17a in boiling ethanol in the presence of triethyl amine to give pyridopyrazolotriazine, compound 20a prepared via this route is the same identical in all aspects with that previously prepared.

Analogously benzothiazoloacetonitrile (18b) and cyanothioacetamide (1) reacted with 17a to afford the corresponding pyrazolopyridine derivatives 19b,c which were cyclized by the action of boiling ethanol in the presence of triethyl amine to yield the corresponding pyridopyrazolotriazine derivatives 20b,c. The structures of 19b,c and 20b,c were assigned based on the correct elemental analysis and spectral data as 19a and 20a described before. In the same manner compound 17b reacted with 18a,b and 1 to yield the corresponding pyrazolopyridine derivatives 19d-f which were cyclized by the action of boiling ethanol and triethyl amine to afford the corresponding pyridopyrazolotriazine derivatives 20d-f. In a contrast behavior, compounds 17a,b reacted with malononitrile (18d) to give directly the cyclized product corresponded to pyridopyrazolotriazine derivatives 20g,h. The structures assigned of 20g,h were based on the correct elemental analysis and spectral data (cf. Chart 2 and Tables I & II).

Our investigation was also extended to study the reaction of 17a with acetyl acetone (21a) to give a reaction product 22a. The IR (cm⁻¹) spectrum of 22a showed the absorption bands of CO-ester (1729), CO-acetyl (1689) and saturated CH₂, CH₃ (2985) groups. It's ¹H-NMR (ppm) spectrum revealed the signals of CH₂-CH₃(t, 0.8; q, 3.7), CH₃CO (s, 1.8), CH₃

(s, 1.1) and aromatic protons (7.4–7.7). Based on the above data compound 22a was formulated as pyridopyrazolotriazine derivative.

Analogously compound 17a reacted with ethyl acetoacetate (21b) to give the corresponding pyridopyrazolotriazine derivative 22b. In the same manner compound 17b reacted with 21a,b to give the corresponding pyridopyrazolotriazine derivative 22c,d. The structure of the 22c,d was confirmed based on the correct elemental analyses and spectral data as 22a,b describe before (cf. Experimental part). Compound 17a reacts with ethylbenzovlacetate (23) to yield the corresponding pyrazolopyridine derivative 24a. The IR (cm⁻¹) spectrum of 24a showed the absorption bands of two NH (3350, 3298), CO-ester (1729), CO benzoyl (1699) and saturated CH₂, CH₃ (2985) groups. It's ¹H-NMR (ppm) spectrum revealed the signals of two NH (s, br., 5.3), CH₂CH₃ at pyridine (t, 0.8; q, 3.7), CH₂-CH₃ at pyrazole (t, 1.8; q, 4.0), CH₃ (1.1) and aromatic protons (7.4-7.7). Based on the above data compound 24a was formulated as hydrazopyrazolo[3,4-b]pyridine derivative. The structure of 24a was further elucidated by the action of boiling ethanol and triethyl amine to yield the cyclized product corresponding to pyridopyrazolotriazine derivative 25a (cf. Chart 3 and Tables I & II). The structure of 25a was assigned based on the correct elemental analysis and spectral data. In the same manner 17b reacted with 23 to afford the corresponding hyrazopyrazolopyridine derivative 24b. Compound 24b by the action of boiling ethanol and triethyl amine gave a cyclized product 25b. Compounds 24b and 25b were assigned based on the correct elemental analvsis and spectral data as 24a and 25a described before. Finally 17a reacted with ω-thiocynatoacetophenone (26) to yield a cyclized product 28a. The IR (cm⁻¹) spectrum of **28a** showed the absorption bands of two NH (3332, 3290), CO-ester (1729), CO-benzoyl (1680) and saturated CH₂, CH₃ (2986) groups. It's ¹H-NMR (ppm) spectrum revealed the signals of two NH (s, br., 5.3), CH_2 - CH_3 (t, 0.9; q, 3.7), CH_3 (1.1) in addition to the aromatic protons (m, 7.4-7.7). Based on the above data compound 28a was formulated as iminothiadiazolylpyrazolopyridine derivative 28a. The formation of the iminothiadiazole ring in 28a proceed via the addition of NH to the nitrile function. Further elucidation of 28a by it's reaction with acetic anhydride and hydrogen peroxide to give the N-acetyl and thiadiazolone derivatives 29a and 30a. The IR (cm⁻¹) spectrum of these reaction products showed the absence of NH absorption bands. The mass spectrum of compound 29a gave $m/e= M^{+}+2= 647(100\%)$ which is the same molecular weigh required for a compound with molecular formula C₂₉H₂₃BrN₆O₅S (cf. Chart 3 and Experimental part). Their ¹H-NMR (ppm) spectrum do not revealed any signals corresponding to the NH group. In the same manner 17b reacted with 26 to yield the corresponding iminothiadiazolylpyrazolopyridine derivative 28b. Compound 28b reacted with acetic anhydride and hydrogen peroxide to afford N-acetyl and thiadiazolone derivatives 29b and 30b. The structures assigned for each of 28b, 29b and 30b based on the correct elemental analysis and spectral data as 28a, 29a and 30a described before.

CHART 3

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded (KBr disc) on a Pye Unicam SP- 1100 and Perkin- Elmer FT-IR type 4 Spectrophotometers. ¹H- NMR spectra were recorded on Gemini 200 Hz and Brucker WP-80 spectrometers using TMS as an internal standard. Chemical shifts are expressed as δ ppm units using DMSO-d₆, CDCl₃ and (CD₃)₂CO as solvents. Mass spectra were recorded on Hewlett – Packard GC-MS type 2988 series A using DIP technique at 15 eV and 70 eV.

Microanalyses were performed by the Microanalytical center at Cairo University using Perkin- Elmer 2400 CHN Elemental analyzer. Compound 5b¹⁶ was prepared according to literature procedure.

Reactions of 5a,b with different reagents in methanolic sodium methoxide

A solution of each of **5a,b** (0.01mole) and each of the reagents **6a,b**, **8, 12** or methyl iodide (0.01mole) was heated under reflux in methanolic sodium methoxide for 5 hours. The reaction products obtained on hot or after cooling were filtered off and crystallized from the proper solvents to yield the reaction products **7a-d**, **9a,b**, **11a,b** and **14a,b** respectively (cf. Tables I and II).

Reactions of 17a,b with different reagents in cold ethanol in the presence of sodium acetate

A solution of each of 17a,b (0.01mole) in ethanol (30ml) in the presence of sodium acetate (1g) was treated with each of the reagents 18a-b, 21a,b, 23, 26 and the whole was stirred at room temperature for one hour. The solid products obtained were filtered off, washed with water, and crystallized from the proper solvents to yield the reaction products 19a-f, 20g,h, 22a-d, 24a,b and 28a,b respectively (cf. Tables I and II).

Reactions in hot ethanolic triethylamine

A solution of each of **19a-f**, **24a,b** (0.01mole) in ethanol (30ml) in the presence of triethylamine (0.5ml) was heated under reflux for 2-3 hours. The solids obtained on hot or after cooling were filtered off, and crystal-

lized from the proper solvents to yield the reaction products **20a-f** and **25a,b** respectively (cf. Tables I and II).

Reaction with hydrazine hydrate

A solution of **14a,b** (0.01mole) in ethanol (30ml) was treated with hydrazine hydrate (10ml) and then heated under reflux for 6 hours. The solids obtained on hot or after cooling were filtered off, and crystallized from the proper solvents to yield the reaction products **15a,b** respectively (cf. Tables I and II).

Reaction with nitrous acid

A cold solution of each of 15a,b (0.01mole) in concentrated hydrochloric acid (5ml) was treated with a cold solution of sodium nitrite (0.015 mole) and then stirred in an ice -cold bath for one hour. The solid products obtained were filtered, washed with water and recrystallized from the proper solvents to yield the reaction products 17a,b respectively (cf. Tables I and II).

Reaction with phenylisothiocyanate

A cold solution of each of 15a,b (0.01mole) in pyridine (30ml) was treated with phenylisothiocyanate (0.01mole). The reaction mixture was heated under reflux for 5 hours then cooled, poured into ice-cold water and acidified by dilute hydrochloric acid. The solid products obtained were filtered, and recrystallized from the proper solvents to yield the reaction products 16a,b respectively (cf. Tables I and II).

References

- 1. M. A. A. Elneairy; Phosphorus, Sulfur and Silicon, 148, 189 (1999).
- 2. F.A. Attaby, S. M. Eldin and M. A. A. Elneairy; Heteroatom Chem., 9, 571 (1998).
- 3. F.A. Attaby, A. M. Abdel-fattah; Phosphorus, Sulfur and Silicon. 155, 253 (1999).
- 4. A. M. Abdel-fattah; Phosphorus, Sulfur and Silicon, 156, 53 (2000).
- 5. F.A. Attaby; Phosphorus, Sulfur and Silicon, 126, 27 (1997).
- 6. F.A. Attaby; Phosphorus, Sulfur and Silicon, 139, 1 (1998).
- F.A. Attaby, S. M. Eldin and M. Abdel-Razik; Phosphorus, Sulfur and Silicon, 106, 21 (1996).
- F.A. Attaby, S. M. Eldin, W. M. Bassouni and M. A. A. Elneairy; Phosphorus, Sulfur and Silicon, 108, 31 (1996).

- F.A. Attaby, M.A.A. Elneairy and M. S. Elsayed; Phosphorous, Sulfur and Silicon, 149, 29, (1999).
- F.A. Attaby, Sanaa M. Eldin and M. A. A. Elneairy; J. Chem. Res., (S)10, 632; (M) 10, 2754 (1998).
- G. Lohaus and W. Dittmar; S. Afric. Patent, 6 906 036 (1968); C. A., 73, 120308 (1968).
- 12. G. A. Youngdale, U. S. Patent, 4 288 440, (1980), C. A. 96, 6596c (1982).
- 13. A. H. Todd, Br. Patent, 1 203 149, (1970), C. A. 73, 120508b (1970).
- 14. R. W. Fries, D. P. Bohlken and B. V. Plapp, J. Med. Chem., 22, 356m (1979).
- B. R. Tolf, R. Bahlbom, Theorell and A. Akenson, Acta Chem. Scand., Ser. B., 36, 101(1982).
- A. Krause, E. Liepins, J. Pelcers, Z. Kalme, L. Dipans and G. Duburs, Kim. Geterosikl. Soedin, 1, 92, (1985); C. A. 103, 71161 (1985).